

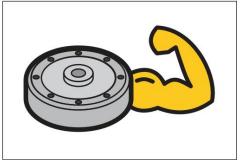
LCF-Serie

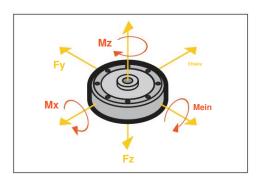
Handbuch zur Zug- und Drucksensorfamilie

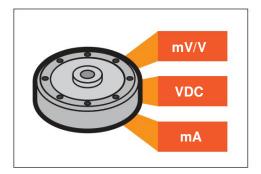
2

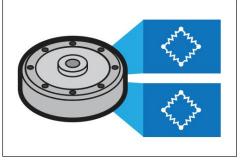
Inhaltsverzeichnis

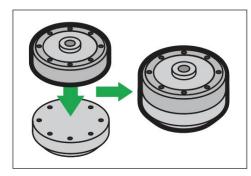
<u>Merkmale</u>	Elektrische Installation
Mechanische Installation	Verwendung und Anschlüsse des Shields
Maximales Installationsdrehmoment	Kalibrierung
Montage und Installation	Fehlerbehebung
Schraubendrehmoment und Anziehmuster.	Weitere Supportressourcen
Kabelpflege und -verlegung	

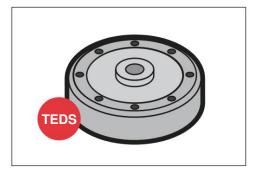



Hauptmerkmale


Wir bieten eine große Auswahl an Kapazitäten von 25 lb bis 100.000 lb.


Modelle mit Ermüdungsbeständigkeit bieten längere Lebenszyklen und eine längere Nutzungsdauer.


Entwickelt, um eine bessere Unterstützung außeraxialer und externer Lasten zu bieten.


Interne Verstärker für Spannungs- oder Stromausgang bei ausgewählten Modellen verfügbar.

Redundante oder Dual-Bridge-Funktion bei ausgewählten Modellen verfügbar.

Spannungsbasen ermöglichen eine Spannungsinline-Belastung

Bei einigen Modellen sind integrierte TEDS-Kalibrierungsinformationen verfügbar.

Mechanische Installation

Um eine Beschädigung des LCF-Sensors während der Installation und Verwendung zu vermeiden, sollten die folgenden Punkte beachtet werden.

- Vermeiden Sie Bedingungen, die die IP-Schutzart des Sensors überschreiten.
- An einem trockenen Ort ohne Vorrichtungen lagern.

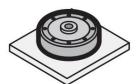
MAXIMALE MOMENTE UND OFF-AXIS LADEN

• Fremdlastinformationen können verwendet werden um festzustellen, ob der Sensor unvermeidbaren außeraxialen Belastungen und Momenten standhalten kann. Fremdlast

> Informationen finden Sie unter: http://www. futek.com/extraneous-load-factor

• Eine zusätzliche Anleitung finden Sie unter: https:// media.futek.com/content/futek/ files/pdf/Extraneous_Load_Factors/How_ So_berechnen_Sie_Fremdlasten.pdf

1. Den Sensor nicht am Kabel ziehen oder tragen.


2. Überwachen Sie die Sensorausgabe für Auswirkungen auf die Nullleistung während der Installation, um Schäden zu vermeiden.

3. Installieren Sie in einer

trockenen, sauberen Umgebung, es sei denn, die IP-Bewertung lässt andere Umgebungen zu

MAXIMALES MONTAGEDREHMOMENT DER MITTELNABE			
MODELL	KAPAZITÄT (lbs)	MAXIMALES SCHRAUBENDREHMOMENT (in-lbs)	
LCF300	25	100,0	
	50/100	100,0	
	250/500	100,0	
LCF400	250/500	700,0	
	1000	700,0	
	2500	700,0	
	5000	700,0	
LCF450/LCF455	300	700,0	
	500	140,0	
	1000	450,0	
	2000	1000,0	
	5000	2100,0	
	10000	2100,0	
LCF451/LCF456	250	140,0	
	500	450,0	
	1000	1000,0	
	2000	2100,0	
	5000	2100,0	
LCF500/LCF505	25000	10000,0	
	50000	15000,0	
LCF501/LCF506	12500	10000,0	
	25000	15000,0	
LCF550/LCF555	100000	38000,0	
LCF551/LCF556	50000	38000,0	

Montage und Installation

Nachfolgend finden Sie Informationen zur ordnungsgemäßen Montage und Installation. Informationen zum Gewinde und zur richtigen Ausrichtung der Wägezelle finden Sie im Sensordatenblatt, um die Leistung zu maximieren und Kabelstörungen zu minimieren.


• Die Messungen werden auf der

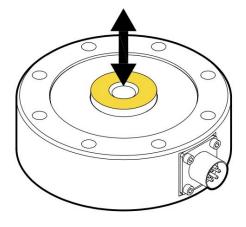
Sensor-Datenblatt und haben die folgenden Toleranzen basierend auf der Anzahl der vorhandenen

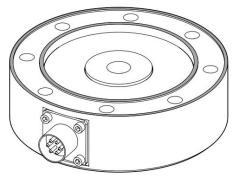
Dezimalstellen.

TOLERANZ DES DEZIMALFORMATS		
0.x ±0,1 Zoll		
0.xx	±0,01 Zoll	
0.xxx	±0,005 Zoll	
0.xxxx	±0,001 Zoll	

1. Die Ladung muss in einer Linie liegen und zentriert, wenn keine Ausgleichsgestänge verwendet werden

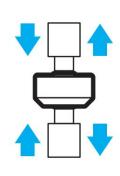
2. Die Auflageflächen müssen eben und in einer Linie sein




3. Unterstützung nur am Außenring

Aktives Ende

4. Die Lastvorrichtung muss den oberen Innenring berühren


Weitere Montagevorschläge:

Lastplatte

Richtkupplungen

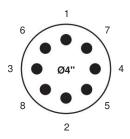
Sensorlösungsquelle

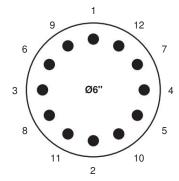
Last · Drehmoment · Druck · Mehrachsen · Kalibrierung · Instrumente · Software

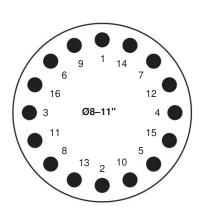
Schraubendrehmoment &

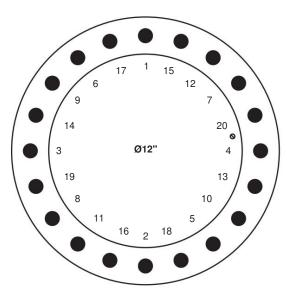
Straffungsmuster

VORSICHTSMASSNAHMEN


Lassen Sie den Sensor während der Installation und Handhabung immer eingesteckt, um die Ausgabe zu überwachen und so eine dauerhafte Nullpunktverschiebung und Überlastung zu vermeiden. Es wird empfohlen, ähnliche Materialien für die Passflächen zu verwenden. Dadurch wird der Fehler reduziert, der durch Wärmeausdehnung und behält die von FUTEK bereitgestellten Spezifikationen bei.

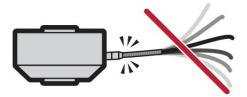

Für eine verbesserte Genauigkeit und eine geringere Nullpunktverschiebung bei der Montage und beim Festziehen der Schrauben sollte die Platte möglichst eben sein. Für optimale Genauigkeit sollte die Montageplatte eine Ebenheit von maximal 0,0002 Zoll aufweisen. Wenn nach dem Schleifen der Montageplatte geschweißt oder wärmebehandelt wird, überprüfen Sie erneut, ob die Oberfläche eben geblieben ist. (Erhitzen von Materialien kann zu Verzug führen.)

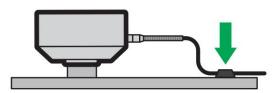

Stellen Sie sicher, dass die Montageplatte die aufgebrachte Last mit minimaler Durchbiegung tragen kann. Je steifer die Platte, desto höher ist die Genauigkeit, die Sie erreichen


Beachten Sie bei der Montage Ihres Pancake-Sensors die unten stehenden Diagramme und Tabellen, Ziehen Sie die Schrauben zunächst nicht bis zum Maximum an. Ziehen Sie alle Schrauben nach der 40%-, 80%- und 100%-Regel an. Dadurch wird die Nullverzerrung minimiert und die Sensorgenauigkeit.

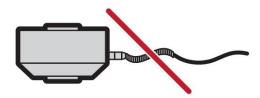
TROCKENDREHMOMENTSPEZIFIKATIONEN FÜR SECHSKANTSCHRAUBEN				
Anzahl der Löcher	GRÖSSE	KAPAZITÄT	SCHRAUBENGRÖSSEN	KLASSE 8 (in-lb)
8	Ø 4"	250–10.000 Pfund.	1/4-28	95
12	Ø 6"	10.000-50.000 Pfund.	3/8-24	600
16	Ø 8"	100-150.000 Pfund.	1/2-20	1400
16	Ø 11"	250.000 Pfund.	5/8-18	3000
20	Ø 12"	400.000 Pfund.	3/4-16	4800

Sensoriösungsquelle Last · Drehmoment · Druck · Mehrachsen · Kalibrierung · Instrumente · Software




Kabelpflege und -verlegung

• Nachfolgend finden Sie Informationen zur richtigen Pflege und Handhabung des Kabels. Kabelmaterialtyp und -länge finden Sie online auf der Sensorbeschreibungsseite.


1. Vermeiden Sie Zugbelastungen und Bewegungen am Kabel, um Schäden zu vermeiden.

2. Sensorkabel ordnungsgemäß an der Begrenzungsleitung befestigen Bewegungseinfluss.

3. Vermeiden Sie das Verbiegen der Zugentlastung. Biegungen in Das Kabel sollte einen Radius von zehn nicht überschreiten mal dem Durchmesser des Sensorkabels für dynamische oder bewegte Anwendungen und darf eine einmalige statische, dauerhafte Biegung von zwei- bis dreimal dem Durchmesser des

KABELMANTEL-REFERENZ					
MATERIAL	TEMP	ANWENDUNG ZUM ZIEL DE	R CHEMIKALIENBELASTUNG	HANDHABUNG	ANMERKUNGEN
Teflon	Ausgezeichn	Ausgezeichnet Industrie, Medizin, Luft- und Raumfah		hrt Robust, glatt	
PVC (Polyvinylchlorid) Gut		Gut	Allgemein	Weich, flexibel, einfach anzuwe	nden. Nicht für kalte
					Anwendungen geeignet.
Silikon	Durchschnittlich A	usreichend	Automatisierung	Weich, flexibel, einfach zu verwenden	
Polypropylen	Gut	Gut	Automatisierung	Weich, flexibel, einfach zu verwenden	
Polyester	Gut	Gut	Allgemein	Weich, flexibel, einfach zu verwenden	
Polyurethan	Durchschnittl	ich Gut	Automatisierung	Weich, flexibel, einfach zu verwe	enden. Nicht für thermische Kammern

Elektrische Installation

VERKABELUNG UND ANSCHLÜSSE

- Die Standard-Wägezellenserie LCF verwendet eine vierpoliger LEMO® und sechspoliger Bendix
- Standardmäßige Vierdrahtverbindungen sind
 - + Anregung, Anregung, + Signal und A Signal **p**0er Standa**p**dfarbcode für 3
 - die oben aufgeführten Anschlüsse sind Rot, 3 Schwarz, Grein und Weiß.
- ullet Bei Nichtgebrauch schließen Sie die \pm Sense-Kabel an am selben Instrumentenstandort wie ± Anregung.
- Sechsadrige Anschlüsse bieten zusätzliche + Sense und - Sense Anschlüsse oder TEDS-Daten und TEDS-Rückverbindungen. Weitere Anschluss-Standardfarben sind Orange und Blau.
- Weitere Informationen zur Verkabelung finden Sie im Online-Datenblatt des Sensors.

LCF-Anregungsleistungspegel			
SENSORFAMILIE MA	SENSORFAMILIE MAX. ERREGERUNG		
LCF300	20 V		
LCF400	18 V		
LCF450	20 V		
LCF451	20 V		
LCF455	20 V		
LCF456	20 V		
LCF500	20 V		
LCF501	20 V		
LCF505	20 V		
LCF506	20 V		
LCF550	20 V		
LCF551	20 V		
LCF555	20 V		
LCF556	20 V		

CC4

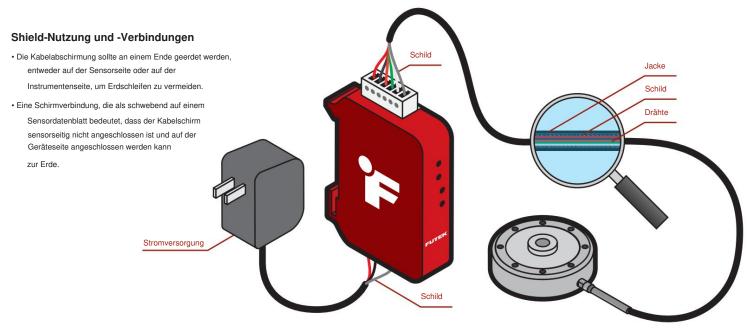
Handbuch zur LCF-Zug- und Kompressionssensorfamilie

Sensorbuchse
Sicht

LEMO ·	LEMO 4-PIN			
PIN-F	ARBE	BESCHREIBUNG		
1	CB _{Rot}	BC + Anregung ANZEIGE	BC ANZEIGE	
2	Grün	+ Signal	ATTECOL	
3	Weiß	- Signal		
4	Schwarz	– Erregung		

CC1/CC1T mV/V

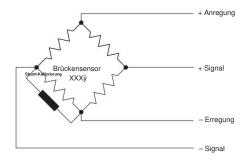
Sensorbuchse Sicht


BENDIX 6-PIN	BENDIX 6-PIN			
PIN FARBE BESC	HREIBUNG TEDS E	BESCHREIBUNG		
Ein Rot	+ Anregung	+ Anregung		
B Schwarz	– Erregung	– Erregung		
C Grün	+ Signal	+ Signal		
D Weiß	– Signal	– Signal		
E Orange + Sense	е	TEDS-Daten		
F Blau	- Sinn	TEDS-Boden		

Kalibrierung

- Eine jährliche Kalibrierung wird empfohlen. Der Überprüfungsund Kalibrierungszeitraum muss jedoch je nach Anwendung, Bedingungen, Lebensdauer und Nutzung festgelegt werden.
- FUTEK bietet auch NIST-Kalibrierungen an als A2LA akkreditierte Kalibrierungen für Gesamt Unsicherheit.
- Weitere Informationen zu verfügbaren
 Kalibrierungen Besuchen Sie die FUTEK-Kalibrierungswebsite
 Seite unter: https://www.futek.com/store-calibration
- Für Neukalibrierungsaufträge besuchen Sie die FUTEK
 Neukalibrierungsseite unter: https://www.futek.com/recalibration
- Eine Online-Zusammenfassung der Kalibrierungsergebnisse ist verfügbar unter: https://www.futek.com/support/Kalibrierungsdaten

SHUNT


Ein Shunt ist ein externer Widerstand, der an zwei Punkten der Wheatstone-Brücke der Wägezelle angelegt wird, um einen bekannten, festen Ausgang vom Sensor zu erzeugen.

Shunt-Ergebnisse können zum Einrichten von Instrumenten sowie zum Vergleichen von Änderungen an der Wägezellenausgabe im Laufe der Zeit und der Nutzung verwendet werden.

Bei der Auswahl des geeigneten Shunt-Widerstands für Ihre Wägezelle empfehlen wir einen Widerstand, der eine Leistung von etwa 80 % der Nennleistung des Sensors erzeugt. Es ist wichtig, einen Shunt-Widerstand zu haben, der zu einer

Ausgabe, die geringer ist als die volle Ausgabe der Wägezelle.

Darüber hinaus können auf dem Datenblatt des Sensors empfohlene Shunt-Widerstandsstufen angegeben werden.

TEDS

Elektronisches Datenblatt zum Wandler (TEDS) Der IEEE1451.4-Standard ist für FUTEK verfügbar

Sensoren und wird von ausgewählten FUTEK-Instrumenten verwendet.

Durch die Verwendung von TEDS können Kalibrierungsinformationen der Wägezelle mit dem

Sensor oder Sensorkabel zur Verwendung mit TEDSfähigen Instrumenten gespeichert werden.

FUTEK verwendet die Bridge Sensor-Vorlage 33 für die LCF-Familie.

Die folgenden FUTEK-Instrumente sind TEDS und LCF-kompatibel:

IPM-Serie

Panel-Montage-Display

IHH-Serie Handmessgerät

Fehlerbehebung

Zur Fehlerbehebung empfehlen wir, den Sensor von allen Vorrichtungen zu entfernen. Um die ordnungsgemäße Funktion des Sensors zu überprüfen, legen Sie ihn auf eine feste Unterlage und wenden Sie eine bekannte Last an.

Wir empfehlen außerdem die Verwendung eines Voltmeters mit sauberer Stromversorgung, um zu bestätigen, dass der Sensor ordnungsgemäß funktioniert.

SYMPTOM	MÖGLICHE URSACHE	ÜBERPRÜFEN	REPARATURFÄHIGKEIT
Hoher Nullausgang	 Sensor steht unter Vorspannung Der Sensor wurde durch zu hohe große Last, außeraxiale Last oder Moment. Der Sensor hat eine hohe zyklische Belastungsermüdung erfahren. 	 Vorrichtungen oder Schraubenspannungen k\u00f6nnen zu Vorspannungen f\u00fchren. Belastung und St\u00fctzplatzierung f\u00fcr au\u00edseraxiale Belastungen. Vermeiden Sie \u00fcberm\u00e4\u00dfige Momente w\u00e4hrend der Installation. 	Eine Überlastschaltung wäre nicht reparierbar. Wenn der Nullpunktversatz stabil ist, kann es sein, Es ist möglich, den Sensor durch Tara oder durch Subtrahieren von Null von aufeinanderfolgenden Messwerten zu verwenden.
Nicht reagierende Nullausgabe	 Sensor oder Instrument werden nicht mit Strom versorgt. Der Sensor ist nicht richtig angeschlossen. Die Last wird nicht richtig auf Sensor. Der Sensor wird nicht richtig gestützt und lässt keine Auslenkung zu, um die Last zu messen. Interne Unterbrechung oder Kurzschluss. 	Stromversorgung und Verkabelung zu Sensor und Instrument ment. Sensorbrückenwiderstand auf mögliche Unterbrechungen oder Kurzschlüsse. Führen Sie einen Durchgangstest am Kabel durch. Die Ladung ist korrekt auf der Ladefläche des Sensors platziert. Die Sensorladefläche wird nicht blockiert oder gestützt und kann sich unter Last biegen. Die Sensorunterstützung funktioniert nicht während	Interne Unterbrechungen oder Kurzschlüsse würden nicht zur Reparatur verfügbar. Eine Reparatur des Sensorkabels ist möglicherweise möglich, wenn die Trennung oder der Kurzschluss nicht zu nahe ist zum Sensor.
Nicht reagierende hohe Leistung	Der Sensor ist vom Instrument. Im Sensor oder in der Kabelverbindung ist eine Öffnung aufgetreten. Sensor wurde überlastet und de- Es bilden sich permanent hohe Spannungen an den inneren Messgeräten. Vorrichtung, aufgebrachte Last oder Montage verursachen eine hohe Vorspannung am Sensor.	 Stromversorgung und Verkabelung zu Sensor und Instrument ment. Sensorbrückenwiderstand auf mögliche Unterbrechungen oder Kurzschlüsse. Führen Sie eine Durchgangsprüfung am Kabel durch. Sensor-Null-Ausgang, um zu sehen, ob der Sensor kehrt auf Null zurück oder weist aufgrund einer Überlastung eine hohe Nulllastleistung auf. Entfernen Sie die Last und lösen Sie die Befestigungsschrauben oder -vorrichtungen, um zu prüfen, ob der Sensor vorgespannt ist. 	Eine Überlastschaltung wäre nicht reparierbar. Interne Unterbrechungen oder Kurzschlüsse würden nicht zur Reparatur verfügbar. Eine Reparatur des Sensorkabels ist möglicherweise möglich, wenn die Trennung oder der Kurzschluss nicht zu nahe ist zum Sensor.
Falsche Ausgabe für angewandte Last	 Die Last wird nicht richtig auf die Sensor-Ladefläche aufgebracht oder ist außerhalb der Achse. Die Befestigungen sind nicht sicher oder behindern Laden. Die Sensorladefläche kann sich bei aufgebrachter Last nicht verformen. Die Sensorhalterung ist nicht geriffelt und fest. Es wird ein falscher Sensorausgang verwendet. 	 Platzierung der Last auf dem Sensor. Die Vorrichtungen behindern nicht die Fähigkeit, laden. Die Auflagefläche gibt bei Belastung nicht nach. Kalibrierungsüberprüfte Ausgänge werden gebraucht. 	Eine Neukalibrierung ist zur Bestätigung verfügbar. rung der Sensorleistung.

SYMPTOM	MÖGLICHE URSACHE	ÜBERPRÜFEN	REPARATURFÄHIGKEIT
Nullpunktdrift	Instabile oder rauschende Stromversorgung des Sensors.	Stabilität der Stromversorgung und des Geräuschpegels.	Innere Schäden durch Flüssigkeitseinwirkung sind nicht reparierbar.
	Sensor Temperaturschwankungen ausgesetzt.	 Bei Temperaturänderungen oder ungleichmäßig verteilten Temperaturänderungen. 	 Eine Neukalibrierung ist zur Bestätigung verfügbar. rung der Sensorleistung.
	 Der Sensor ist der Vorspannung durch die Vorrichtung oder Halterung ausgesetzt. Sensor Flüssigkeit oder Feuchtigkeit ausgesetzt. 	Mögliche lose Befestigungen und Schrauben	
Leistungseinbruch unter Last	Last oder Vorrichtungen sind nicht stabil. Die Stromversorgung ist instabil oder laut.	Stabilität der Stromversorgung und des Geräuschpegels.	 Innere Schäden durch Flüssigkeitseinwirkung sind nicht reparierbar.
	Der Sensor ist Temperaturschwankungen ausgesetzt.	 Vorrichtungen für Stabilität. Bei Temperaturänderungen oder ungleichmäßig verteilten Temperaturänderungen. 	 Eine Neukalibrierung ist zur Bestätigung verfügbar. rung der Sensorleistung.
	 Die Sensorhalterung ist nicht starr und fest. Sensor ist Flüssigkeit oder Feuchtigkeit ausgesetzt. Reibung bei der Montage 	Stellen Sie sicher, dass die Auflageflächen unter Belastung nicht nachgeben.	
Laut oder instabil Ausgabe	Das Netzteil ist laut. Die Last ist nicht stabil.	Stabilität der Stromversorgung. Die Ladung ist stabil und die Befestigungen sind sicher.	Es gibt keine aktive Elektronik in einem Wägezelle, wie Kondensatoren oder IC-Chips, die zum
	Der Sensor oder das Kabel befindet sich in der Nähe von Hochleistungsgeräten.	Verlegen Sie Kabel weg von Hochleistungsgeräten.	Rauschen beitragen können.
	 Der Sensor oder das Instrument ist einer Erdschleife mit anderen Geräteerdungen ausgesetzt. 	 Stellen Sie sicher, dass die Verkabelung und Erdung nicht mit einer unbeabsichtigten Geräteerdung verbunden sind. 	

Weitere Support-Ressourcen

- Tipps zur Lärmreduzierung finden Sie unter: https://___ media.futek.com/content/futek/files/pdf/Manuals_ and_Technical_Documents/how-to-reduce -electrical-noise-in-your-system.PDF
- Supportinformationen für FUTEK-Instrumente finden Sie online unter: https://www.futek.com/instrument-manuals
- Eine Neukalibrierung alle ein Jahr wird empfohlen. Aber Der Überprüfungs- und Kalibrierungszeitraum wird basierend auf Anwendung, Bedingungen, Haltbarkeit und Nutzung festgelegt. Kalibrierungsdaten sind online unter https:// www.futek.com/support/calibrationdata verfügbar.
- Um Ihren Sensor oder Ihr System zur Neukalibrierung einzusenden, besuchen Sie unsere FUTEK-Kalibrierungswebseite unter: https:// www.futek.com/recalibration
- Der technische Support von FUTEK ist erreichbar unter: https://www.futek.com/contact/technical-request
- Um Ihren Sensor oder Ihr System zur Bewertung und Reparatur einzusenden, besuchen Sie unsere FUTEK RMA-Webseite unter: https:// www.futek.com/rma
- FUTEK-Kontaktinformationen finden Sie online unter: http://www.futek.com/contact
- · Garantieinformationen finden Sie online unter https://media.futek.com/content/futek/files/pdf/ ErweiterteGarantie.pdf

Zeichnungsnummer: EM1045

Tel: (949) 465-0900 Fax: (949) 465-0905

www.futek.com

